Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 43(3): 125-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350140

RESUMO

Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of Cornus officinalis. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the C. officinalis geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from C. officinalis and analyzed. The cDNA sequence of the CoGPPS gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of Actinidia chinensis and Camellia sinensis, but relatively distantly related to Paeonia lactiflora and Tripterygium wilfordii. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of CoGPPS; that is, CoGPPS was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.


Assuntos
Cornus , Iridoides , Fosfatos de Poli-Isoprenil , Cornus/genética , Cornus/química , Filogenia , Glicosídeos Iridoides , Clonagem Molecular
2.
Plants (Basel) ; 12(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38068693

RESUMO

Significant progress has been made in the functions of auxin efflux transporter PIN-FORMED (PIN) genes for the regulation of growth and development in rice. However, knowledge on the roles of OsPIN genes in abiotic stresses is limited. We previously reported that the mutation of OsPIN1b alters rice architecture and root gravitropism, while the role of OsPIN1b in the regulation of rice abiotic stress adaptations is still largely elusive. In the present study, two homozygous ospin1b mutants (C1b-1 and C1b-2) were employed to investigate the roles of OsPIN1b in regulating abiotic stress adaptations. Low temperature gradually suppressed OsPIN1b expression, while osmotic stress treatment firstly induced and then inhibited OsPIN1b expression. Most OsPIN genes and auxin biosynthesis key genes OsYUC were up-regulated in ospin1b leaves, implying that auxin homeostasis is probably disturbed in ospin1b mutants. The loss of function of OsPIN1b significantly decreased rice chilling tolerance, which was evidenced by decreased survival rate, increased death cells and ion leakage under chilling conditions. Compared with the wild-type (WT), ospin1b mutants accumulated more hydrogen peroxide (H2O2) and less superoxide anion radicals (O2-) after chilling treatment, indicating that reactive oxygen species (ROS) homeostasis is disrupted in ospin1b mutants. Consistently, C-repeat binding factor (CBF)/dehydration-responsive element binding factor (DREB) genes were downregulated in ospin1b mutants, implying that OsDREB genes are implicated in OsPIN1b-mediated chilling impairment. Additionally, the mutation of OsPIN1b led to decreased sensitivity to abscisic acid (ABA) treatment in seed germination, impaired drought tolerance in the seedlings and changed expression of ABA-associated genes in rice roots. Taken together, our investigations revealed that OsPIN1b is implicated in chilling and drought tolerance in rice and provide new insight for improving abiotic stress tolerance in rice.

3.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836156

RESUMO

Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, antioxidant, anti-inflammatory, and anti-cancer effects. Mitogen-activated protein kinase (MAPKs) can increase the activity of WRKY family transcription factors in a phosphorylated manner, thereby increasing the content of secondary metabolites. However, the mechanism of interaction between MAPKs and WRKYs in F. suspensa remains unclear. In this study, we cloned the genes of FsWRKY4 and FsMAPK3, and performed a bioinformatics analysis. The expression patterns of FsWRKY4 and FsMAPK3 were analyzed in the different developmental stages of leaf and fruit from F. suspensa using real-time fluorescence quantitative PCR (qRT-PCR). Subcellular localization analysis of FsWRKY4 and FsMAPK3 proteins was performed using a laser scanning confocal microscope. The existence of interactions between FsWRKY4 and FsMPAK3 in vitro was verified by yeast two-hybridization. Results showed that the cDNA of FsWRKY4 (GenBank number: OR566682) and FsMAPK3 (GenBank number: OR566683) were 1587 and 522 bp, respectively. The expression of FsWRKY4 was higher in the leaves than in fruits, and the expression of FsMAPK3 was higher in fruits but lower in leaves. The subcellular localization results indicated that FsWRKY4 was localized in the nucleus and FsMAPK3 in the cytoplasm and nucleus. The prey vector pGADT7-FsWRKY4 and bait vector pGBKT7-FsMAPK3 were constructed and co-transferred into Y2H Glod yeast receptor cells. The results indicated that FsWRKY4 and FsMAPK3 proteins interact with each other in vitro. The preliminary study may provide a basis for more precise elucidation of the synthesis of secondary metabolites in F. suspensa.

4.
Plants (Basel) ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570963

RESUMO

The auxin efflux transporter PIN-FORMED (PIN) family is one of the major protein families that facilitates polar auxin transport in plants. Here, we report that overexpression of OsPIN9 leads to altered plant architecture and chilling tolerance in rice. The expression profile analysis indicated that OsPIN9 was gradually suppressed by chilling stress. The shoot height and adventitious root number of OsPIN9-overexpressing (OE) plants were significantly reduced at the seedling stage. The roots of OE plants were more tolerant to N-1-naphthylphthalamic acid (NPA) treatment than WT plants, indicating the disturbance of auxin homeostasis in OE lines. The chilling tolerance assay showed that the survival rate of OE plants was markedly lower than that of wild-type (WT) plants. Consistently, more dead cells, increased electrolyte leakage, and increased malondialdehyde (MDA) content were observed in OE plants compared to those in WT plants under chilling conditions. Notably, OE plants accumulated more hydrogen peroxide (H2O2) and less superoxide anion radicals (O2-) than WT plants under chilling conditions. In contrast, catalase (CAT) and superoxide dismutase (SOD) activities in OE lines decreased significantly compared to those in WT plants at the early chilling stage, implying that the impaired chilling tolerance of transgenic plants is probably attributed to the sharp induction of H2O2 and the delayed induction of antioxidant enzyme activities at this stage. In addition, several OsRboh genes, which play a crucial role in ROS production under abiotic stress, showed an obvious increase after chilling stress in OE plants compared to that in WT plants, which probably at least in part contributes to the production of ROS under chilling stress in OE plants. Together, our results reveal that OsPIN9 plays a vital role in regulating plant architecture and, more importantly, is involved in regulating rice chilling tolerance by influencing auxin and ROS homeostasis.

5.
Plant Commun ; 4(6): 100641, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37349987

RESUMO

Bioengineering of photorespiratory bypasses is an effective strategy for improving plant productivity by modulating photosynthesis. In previous work, two photorespiratory bypasses, the GOC and GCGT bypasses, increased photosynthetic rates but decreased seed-setting rate in rice (Oryza sativa), probably owing to excess photosynthate accumulation in the stem. To solve this bottleneck, we successfully developed a new synthetic photorespiratory bypass (called the GMA bypass) in rice chloroplasts by introducing Oryza sativa glycolate oxidase 1 (OsGLO1), Cucurbita maxima malate synthase (CmMS), and Oryza sativa ascorbate peroxidase7 (OsAPX7) into the rice genome using a high-efficiency transgene stacking system. Unlike the GOC and GCGT bypass genes driven by constitutive promoters, OsGLO1 in GMA plants was driven by a light-inducible Rubisco small subunit promoter (pRbcS); its expression dynamically changed in response to light, producing a more moderate increase in photosynthate. Photosynthetic rates were significantly increased in GMA plants, and grain yields were significantly improved under greenhouse and field conditions. Transgenic GMA rice showed no reduction in seed-setting rate under either test condition, unlike previous photorespiratory-bypass rice, probably reflecting proper modulation of the photorespiratory bypass. Together, these results imply that appropriate engineering of the GMA bypass can enhance rice growth and grain yield without affecting seed-setting rate.


Assuntos
Oryza , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Fotossíntese/genética , Cloroplastos/metabolismo , Grão Comestível/genética
6.
Acta Pharm Sin B ; 13(5): 2234-2249, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250171

RESUMO

The many-banded krait, Bungarus multicinctus, has been recorded as the animal resource of JinQianBaiHuaShe in the Chinese Pharmacopoeia. Characterization of its venoms classified chief phyla of modern animal neurotoxins. However, the evolutionary origin and diversification of its neurotoxins as well as biosynthesis of its active compounds remain largely unknown due to the lack of its high-quality genome. Here, we present the 1.58 Gbp genome of B. multicinctus assembled into 18 chromosomes with contig/scaffold N50 of 7.53 Mbp/149.8 Mbp. Major bungarotoxin-coding genes were clustered within genome by family and found to be associated with ancient local duplications. The truncation of glycosylphosphatidylinositol anchor in the 3'-terminal of a LY6E paralog released modern three-finger toxins (3FTxs) from membrane tethering before the Colubroidea divergence. Subsequent expansion and mutations diversified and recruited these 3FTxs. After the cobra/krait divergence, the modern unit-B of ß-bungarotoxin emerged with an extra cysteine residue. A subsequent point substitution in unit-A enabled the ß-bungarotoxin covalent linkage. The B. multicinctus gene expression, chromatin topological organization, and histone modification characteristics were featured by transcriptome, proteome, chromatin conformation capture sequencing, and ChIP-seq. The results highlighted that venom production was under a sophisticated regulation. Our findings provide new insights into snake neurotoxin research, meanwhile will facilitate antivenom development, toxin-driven drug discovery and the quality control of JinQianBaiHuaShe.

7.
DNA Cell Biol ; 42(2): 91-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36730809

RESUMO

Cornus officinalis is a perennial deciduous tree or shrub. Its mature fruits are extracted and used in Traditional Chinese Medicine, called Shanzhuyu. The characteristic active components of C. officinalis include loganin and morroniside, which belong to iridoid glycosides. 3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is a key enzyme in the cytoplasmic mevalonate pathway providing the precursor molecules isopentenyl pyrophosphate and dimethylallyl pyrophosphate for isoprenoid biosynthesis such as sterols, triterpenes, and their derivatives such as iridoid glycosides. Different concentrations of methyl jasmonate (MeJA) and ethephon (ETH) solutions were sprayed on C. officinalis seedlings, and the effect of hormones on CoHMGS gene expression was detected by real-time fluorescence quantitative PCR. The quantitative real-time PCR results showed that 750 mg/L ETH treatment had the most significant induction effect on CoHMGS gene expression. The HPLC analysis of extracts revealed that the treatment could also significantly increase the content of morroniside and loganin in the leaves of C. officinalis. By use of a CoHMGS-green fluorescent protein (GFP) fusion construct for heterologous expression in tobacco, laser scanning confocal microscopy revealed a cytoplasmic localization. This preliminary study of the CoHMGS gene could prepare the ground for more precisely elucidating the synthesis of secondary metabolite in C. officinalis.


Assuntos
Cornus , Medicamentos de Ervas Chinesas , Cornus/genética , Iridoides/farmacologia , Glicosídeos Iridoides
8.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771604

RESUMO

Heavy metal pollution possesses potential hazards to plant, animal and human health, which has become the focus of recent attention. Hence, phytoremediation has been regarded as one of the most important remediation technologies for heavy-metal-contaminated soils. In this research, a dominant mine tailing plant, Macleaya cordata, was used as the experimental material to compare the metal transport and oxidative stress response in its roots under lead (Pb) and zinc (Zn) treatments. The result showed that Pb was mainly accumulated in the roots of M. cordata under the Pb treatment; less than 1% Pb was transported to the parts above. An analysis of the Zn content demonstrated a 39% accumulation in the shoots. The production of reactive oxygen species was detected using the in situ histological staining of roots, which showed that hydrogen peroxide in the root tips was observed to increase with the increase in both Pb and Zn concentrations. No significant superoxide anion changes were noted in the root tips under the Pb treatment. An analysis of the root enzyme activity showed that increase in NADPH oxidase activity can be responsible for the production of superoxide anions, subsequent the inhibition of root growth and decrease in antioxidant enzyme activities in the roots of M. cordata exposed to excess Zn. In total, this research provides evidence that the root of M. cordata has a high antioxidant capacity for Pb stress, so it can accumulate more Pb without oxidative damage. On the other hand, the Zn accumulated in the roots of M. cordata causes oxidative damage to the root tips, which can stimulate more Zn transport to the shoots to reduce the damage to the roots. This result will provide a basis for the application of M. cordata in the phytoremediation of soil polluted by Pb-Zn compounds.

9.
Metabolites ; 12(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422283

RESUMO

Forsythia suspensa (Thunb.) has been widely used in traditional medicines in Asia. According to the 2020 edition of Chinese Pharmacopoeia, phillyrin is the main active ingredient in F. suspensa, which is effective in clearing heat, reducing swelling, and dispersing nodules. F. suspensa leaf is a non-toxic substance and it can be used to make a health tea. Here, we combine elicitors and transcriptomics to investigate the inducible biosynthesis of the phillyrin from the F. suspensa. After the fruits and leaves of F. suspensa were treated with different concentrations of methyl jasmonate (MeJA), the content of phillyrin in the fruits reached a peak at 200 µM MeJA for 12 h, but which was decreased in leaves. To analyze the differences in key enzyme genes involved in the phillyrin biosynthesis, we sequenced the transcriptome of F. suspensa leaves and fruits treated with 200 µM MeJA for 12 h. We hypothesized that nine genes related to coniferin synthesis including: F. suspensa UDP-glycosyltransferase (FsUGT); F. suspensa 4-coumarate coenzyme CoA ligase (Fs4CL); and F. suspensa Caffeoyl-CoA O-methyltransferase (FsCCoAOMT) etc. The qRT-PCR analysis of genes related to phillyrin biosynthesis was consistent with RNA-seq analysis. We also investigated the dynamic changes of genes in F. suspensa leaves and fruits at different time points after 200 µM MeJA treatment, which laid the foundation for further study of the molecular mechanisms regulating the biosynthesis of phillyrin.

10.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012245

RESUMO

The distribution and content of auxin within plant tissues affect a variety of important growth and developmental processes. Polar auxin transport (PAT), mainly mediated by auxin influx and efflux transporters, plays a vital role in determining auxin maxima and gradients in plants. The auxin efflux carrier PIN-FORMED (PIN) family is one of the major protein families involved in PAT. Rice (Oryza sativa L.) genome possesses 12 OsPIN genes. However, the detailed functions of OsPIN genes involved in regulating the rice architecture and gravity response are less well understood. In the present study, OsPIN1b was disrupted by CRISPR/Cas9 technology, and its roles in modulating rice architecture and root gravitropism were investigated. Tissue-specific analysis showed that OsPIN1b was mainly expressed in roots, stems and sheaths at the seedling stage, and the transcript abundance was progressively decreased during the seedling stages. Expression of OsPIN1b could be quickly and greatly induced by NAA, indicating that OsPIN1b played a vital role in PAT. IAA homeostasis was disturbed in ospin1b mutants, as evidenced by the changed sensitivity of shoot and root to NAA and NPA treatment, respectively. Mutation of OsPIN1b resulted in pleiotropic phenotypes, including decreased growth of shoots and primary roots, reduced adventitious root number in rice seedlings, as well as shorter and narrower leaves, increased leaf angle, more tiller number and decreased plant height and panicle length at the late developmental stage. Moreover, ospin1b mutants displayed a curly root phenotype cultured with tap water regardless of lighting conditions, while nutrient solution culture could partially rescue the curly root phenotype in light and almost completely abolish this phenotype in darkness, indicating the involvement of the integration of light and nutrient signals in root gravitropism regulation. Additionally, amyloplast sedimentation was impaired in the peripheral tiers of the ospin1b root cap columella cell, while it was not the main contributor to the abnormal root gravitropism. These data suggest that OsPIN1b not only plays a vital role in regulating rice architecture but also functions in regulating root gravitropism by the integration of light and nutrient signals.


Assuntos
Gravitropismo , Oryza , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Gravitropismo/genética , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo
11.
Nat Commun ; 13(1): 3051, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650185

RESUMO

Seed protein, oil content and yield are highly correlated agronomically important traits that essentially account for the economic value of soybean. The underlying molecular mechanisms and selection of these correlated seed traits during soybean domestication are, however, less known. Here, we demonstrate that a CCT gene, POWR1, underlies a large-effect protein/oil QTL. A causative TE insertion truncates its CCT domain and substantially increases seed oil content, weight, and yield while decreasing protein content. POWR1 pleiotropically controls these traits likely through regulating seed nutrient transport and lipid metabolism genes. POWR1 is also a domestication gene. We hypothesize that the TE insertion allele is exclusively fixed in cultivated soybean due to selection for larger seeds during domestication, which significantly contributes to shaping soybean with increased yield/seed weight/oil but reduced protein content. This study provides insights into soybean domestication and is significant in improving seed quality and yield in soybean and other crop species.


Assuntos
Domesticação , Alelos , Fenótipo , Sementes/genética , Sementes/metabolismo , /metabolismo
12.
Front Plant Sci ; 13: 854034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463405

RESUMO

Heat shock proteins 90 (Hsp90s) are conserved proteins participating in the responses to heat stress and are found to be involved in different kinds of abiotic and biotic stresses. Brassica napus (B. napus) is an important heteropolyploid crop, producing edible oil. Salt stress is one of the most important hazards to the growth of rape in the world, while Sclerotinia stem rot is one of the most serious diseases, caused by Sclerotinia sclerotiorum (S. sclerotiorum). In this study, the evolution of Hsp90 genes and their responses to these two stresses were elucidated. Bioinformatic analysis through the whole genome of B. napus identified 35 Hsp90 gene family members. Five groups were obtained via phylogenetic analysis with the 35 Hsp genes, Hsps from its two ancestor species Brassica rapa, Brassica oleracea, and AtHsps. Gene structure and conservative motif analysis of these 35 Hsps indicated that the Hsps were relatively conservative in each group. Strong collinearity was also detected between the genomes of Brassica rapa, Brassica oleracea and B. napus, along with identifying syntenic gene pairs of Hsps among the three genomes. In addition, whole genome duplication was discovered as the main reason for the generation of BnHsp gene family. The analysis of cis-acting elements indicated that BnHsp90 might be involved in a variety of abiotic and biotic stress responses. Analysis of the expression pattern indicated that BnHsp90 participates in the responses of B. napus to salt stress and the infection of S. sclerotiorum. Fourteen and nine BnHsp90s were validated to be involved in the defense responses of B. napus against salt stress and S. sclerotiorum, respectively. Our results provide new insights for the roles of BnHsp90s in the responses of B. napus to salt stress and S. sclerotiorum.

13.
Arch Microbiol ; 204(4): 208, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275265

RESUMO

Panax ginseng (Panax ginseng C. A. Mey.) is a perennial herb of the genus ginseng, which is used as medicine with dried roots and rhizomes. With the deepening of research on ginseng, the chemical components and pharmacological effects of ginseng have gradually been discovered. Endophytes are beneficial to host plants. However, the composition of endophytes in different organs from ginseng is poorly elucidated. The report of ginsenoside production by endophytic microbes isolated from Panax sp., motivated us to explore the endophytic microbial diversity related to the roots, stems, and leaves. In this study, the V5-V7 variable region of endophytic bacteria 16S rRNA gene and V1 variable region of endophytic fungi ITS gene in different organs were analyzed by high-throughput sequencing. The diversity and abundance of endophytic microbes in the three organs are different and are affected by the organs. For example, the most abundant endophytic bacterial genus in roots was Mycobacterium, while, the stems and leaves were Ochrobactrum. Similarly, the fungal endophytes, Coniothyrium and Cladosporium, were also found in high abundance in stems, in comparison to roots and leaves. The Shannon index shows that the diversity of endophytic bacteria in roots is the highest, and the richness of endophytic bacterial was root > stem (p < 0.05). Principal coordinate analysis showed that there were obvious microbial differences among the three groups, and the endophytic bacterial composition of the leaves was closer to that of the roots. This study provides an important reference for the study of endophytic microorganisms in ginseng.


Assuntos
Ascomicetos , Micobioma , Panax , Ascomicetos/genética , Bactérias , Panax/microbiologia , RNA Ribossômico 16S/genética
14.
Plants (Basel) ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161236

RESUMO

The crown rot of wheat is a destructive soil-borne pathogen that severely reduces the yield and quality of wheat. This study aimed to screen and identify the antagonistic strains against Fusarium pseudograminearum (Fp), which is the dominant pathogen associated with the crown rot of wheat in China, and evaluate their biosynthetic potential. The antagonistic strains were screened via a dual-culture antagonism assay, and then identified by combining the morphological characteristics and internal transcribed spacer gene sequencing. The polyketide synthases (PKS-I and PKS-II) and non-ribosomal peptide synthetase (NRPS) genes in the antagonistic strains were detected via specific amplification of chromosomal DNA. Eleven out of 157 fungal strains, including six strains with matrix competition and five strains with antibiosis, were obtained. The eleven antagonistic strains belonged to the following four genera: Alternaria, Botryosphaeria, Phoma and Talaromyces. The inhibition rate of six strains with matrix competition was greater than 50%, with B. dothidea S2-22 demonstrating the highest at 80.3%. The width of the inhibition zone of T. trachyspermus R-17 among the five strains with antibiosis was the widest at 11 mm. Among the eleven antagonistic strains, three strains of A. alternata and the strain P. moricola only contained the PKS-II gene, the strain A. tenuissima contained PKS-I and PKS-II genes, three strains of B. dothidea contained PKS-II and NRPS genes, while three strains of T. trachyspermus did not contain any genes. These results demonstrated potential strains for the biocontrol of the crown rot of wheat. In particular, T. trachyspermus R-17 can be investigated further as a promising agent, and the active substances secreted by antagonistic strains may be synthesized by other pathways.

15.
Ying Yong Sheng Tai Xue Bao ; 32(3): 1105-1111, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33754578

RESUMO

To explore the ecotoxicity of Cu2O nanoparticles (NPs) on plant roots, the effects of Cu2O-NPs with different concentrations of 10, 50, 100 and 200 mg·L-1 on the seedling growth, root morphology, and cytogenetic toxicity of wheat 'Zhoumai 18' (Triticum aestivum Zhoumai 18) were examined in a hydroponic experiment. The results showed that Cu2O-NPs inhibited the growth of wheat seedlings. Cu2O-NPs reduced root and shoot lengths, fresh weights of shoot and root, root relative activity and ratio of root to shoot of wheat seedlings, but increased primary root number. Furthermore, with the increases of Cu2O-NPs concentrations, the root elongation zone shortened and the root became hard and brittle, while the average diameter of roots increased. Under the concentration of 100 mg·L-1 Cu2O-NPs, the mitotic index significantly decreased, and vacuolization, plasma membrane detachment, chromosomal abnormality occurred in the root tip cell. In conclusion, Cu2O-NPs are genotoxic to wheat seedlings, with consequences on the growth and development of wheat seedlings and root morphology.


Assuntos
Nanopartículas , Triticum , Cobre , Dano ao DNA , Nanopartículas/toxicidade , Raízes de Plantas , Plântula , Triticum/genética
16.
Sci Rep ; 10(1): 10818, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616875

RESUMO

In this study, the chloroplast genome sequencing of the Achyranthes longifolia, Achyranthes bidentata and Achyranthes aspera were performed by Next-generation sequencing technology. The results revealed that there were a length of 151,520 bp (A. longifolia), 151,284 bp (A. bidentata), 151,486 bp (A. aspera), respectively. These chloroplast genome have a highly conserved structure with a pair of inverted repeat (IR) regions (25,150 bp; 25,145 bp; 25,150 bp), a large single copy (LSC) regions (83,732 bp; 83,933 bp; 83,966 bp) and a small single copy (SSC) regions (17,252 bp; 17,263 bp; 17,254 bp) in A. bidentate, A. aspera and A. longifolia. There were 127 genes were annotated, which including 8 rRNA genes, 37 tRNA genes and 82 functional genes. The phylogenetic analysis strongly revealed that Achyranthes is monophyletic, and A. bidentata was the closest relationship with A. aspera and A. longifolia. A. bidentata and A. longifolia were clustered together, the three Achyranthes species had the same origin, then the gunes of Achyranthes is the closest relative to Alternanthera, and that forms a group with Alternanthera philoxeroides. The research laid a foundation and provided relevant basis for the identification of germplasm resources in the future.


Assuntos
Achyranthes/genética , Cloroplastos/genética , Genoma de Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , RNA de Transferência/genética , Sequências Repetitivas de Ácido Nucleico
17.
PLoS One ; 13(2): e0192610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29451882

RESUMO

Cornus officinalis is one of the most widely used medicinal plants in China and other East Asian countries to cure diseases such as liver, kidney, cardiovascular diseases and frequent urination for thousands of years. It is a Level 3 protected species, and is one of the 42 national key protected wild species of animals and plants in China. However, the genetics and molecular biology of C. officinalis are poorly understood, which has hindered research on the molecular mechanism of its metabolism and utilization. Hence, enriching its genomic data and information is very important. In recent years, the fast-growing technology of next generation sequencing has provided an effective path to gain genomic information from nonmodel species. This study is the first to explore the leaf and fruit tissue transcriptome of C. officinalis using the Illumina HiSeq 4000 platform. A total of 57,954,134 and 60,971,652 clean reads from leaf and fruit were acquired, respectively (GenBank number SRP115440). The pooled reads from all two libraries were assembled into 56,392 unigenes with an average length 856 bp. Among these, 41,146 unigenes matched with sequences in the NCBI nonredundant protein database. The Gene Ontology database assigned 24,336 unigenes with biological process (83.26%), cellular components (53.58%), and molecular function (83.93%). In addition, 10,808 unigenes were assigned a KOG functional classification by the KOG database. Searching against the KEGG pathway database indicated that 18,435 unigenes were mapped to 371 KEGG pathways. Moreover, the edgeR database identified 4,585 significant differentially expressed genes (DEGs), of which 1,392 were up-regulated and 3,193 were down-regulated in fruit tissue compared with leaf tissue. Finally, we explored 581 transcription factors with 50 transcription factor gene families. Most DEGs and transcription factors were related to terpene biosynthesis and secondary metabolic regulation. This study not only represented the first de novo transcriptomic analysis of C. officinalis but also provided fundamental information on its genes and biosynthetic pathway. These findings will help us explore the molecular metabolism mechanism of terpene biosynthesis in C. officinalis.


Assuntos
Cornus/genética , Folhas de Planta/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo
18.
Int J Mol Sci ; 18(10)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974021

RESUMO

Cadmium (Cd) and excess copper (Cu) are toxic to plants, causing a wide range of deleterious effects including the formation of reactive oxygen species. Metallothioneins (MTs) may protect plant cells from heavy metal toxicity by chelating heavy metals via cysteine thiol groups. They may also function as antioxidants. The study investigated the relationship of H2O2 production and ricMT expression in rice radicles and rice suspension cells under Cu or Cd stress. The results showed that H2O2 production in the rice radicles increased before Cu-induced ricMT expression, and after Cd-induced ricMT expression. Rice suspension cells of sense- and antisense-ricMT transgenic lines were obtained by an Agrobacterium-mediated transformation. Overexpression of ricMT significantly decreased the death rate of rice cells, which was accompanied by blocked H2O2 accumulation in rice suspension cells subject to Cu and Cd stress. Our findings confirm that H2O2 is involved in the MT-mediated tolerance of Cu and Cd toxicity in rice.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio/metabolismo , Metalotioneína/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cádmio/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Metalotioneína/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
Front Pharmacol ; 8: 931, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326593

RESUMO

Herbal drug authentication is an important task in traditional medicine; however, it is challenged by the limitations of traditional authentication methods and the lack of trained experts. DNA barcoding is conspicuous in almost all areas of the biological sciences and has already been added to the British pharmacopeia and Chinese pharmacopeia for routine herbal drug authentication. However, DNA barcoding for the Korean pharmacopeia still requires significant improvements. Here, we present a DNA barcode reference library for herbal drugs in the Korean pharmacopeia and developed a species identification engine named KP-IDE to facilitate the adoption of this DNA reference library for the herbal drug authentication. Using taxonomy records, specimen records, sequence records, and reference records, KP-IDE can identify an unknown specimen. Currently, there are 6,777 taxonomy records, 1,054 specimen records, 30,744 sequence records (ITS2 and psbA-trnH) and 285 reference records. Moreover, 27 herbal drug materials were collected from the Seoul Yangnyeongsi herbal medicine market to give an example for real herbal drugs authentications. Our study demonstrates the prospects of the DNA barcode reference library for the Korean pharmacopeia and provides future directions for the use of DNA barcoding for authenticating herbal drugs listed in other modern pharmacopeias.

20.
Chin Med ; 10: 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26628908

RESUMO

BACKGROUND: The radix of Glehnia littoralis Fr. Schmidt ex Miq. (Beishashen), is often misidentified and adultered in Chinese medicine. Its seven common adulterants include Chuanminshen violaceum Sheh et Shan (Chuanmingshen), Changium smyrnioides Wolff (Mingdangshen), Sphallerocarpus gracilis (Bess.) K.-Pol. (Miguoqin), Adenophora polyantha Nakai (Shishashen), Silene tatarinowii Regel (Shishengyingzicao), Adenophora tetraphylla (Thunb.) Fisch (Lunyeshashen) and Adenophora stricta Miq. (Shashen). This study aims to evaluate the feasibility of the second internal transcribed spacer (ITS2) DNA barcoding to discriminate between Glehniae Radix and its common adulterants. METHODS: In this study, we collected 46 samples of G. littoralis and 59 samples of its seven common adulterants. Genomic DNA sequences were extracted from samples, including original plants and commercially processed crude drugs. The ITS2 of the ribosomal DNA sequences were amplified and sequenced bi-directionally. The sequences were assembled by CodonCode Aligner 3.5.7. The descriptive data analysis was conducted and neighbor-joining (NJ) phylogenetic tree was constructed by MEGA 5.0 in accordance with the kimura 2 -parameter (K2P) model. The identification efficiency was evaluated based on the BLAST1 methods. The ITS2 secondary structures were predicted and compared between Glehniae Radix and its adulterants by the ITS2 database. RESULTS: As the 46 ITS2 sequences of G. littoralis were identical to each other, the identification efficiency of the ITS2 region was 100 %. A NJ tree based on the ITS2 sequences, and the predicted secondary structures of ITS2, distinguished Glehniae Radix from its adulterants. CONCLUSION: DNA barcoding based on ITS2 distinguished commercial processed Glehniae Radix from common herbal adulterants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...